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Introduction

◦ One aspect of combinatorial set theory is the study of possible sizes of
subsets of reals which satisfy some combinatorial property.

◦ Examples: maximal almost disjoint families, maximal independent fami-
lies, ultrafilter bases on ω, dominating families, . . .
◦ We call such types of families ’combinatorial families of reals’.
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Example: Mad families

◦ One of the most well-studied type are maximal almost disjoint families:

Definition

A subset A ⊆ [ω]ω is called almost disjoint (ad) iff for all A 6= B ∈ A the
set A ∩ B is finite and no finite subset of A almost covers ω, i.e. for all
A0 ∈ [A]<ω we have that ω \

⋃
A0 is infinite.

Further, A is called maximal iff it is maximal (mad) w.r.t. to inclusion.

Definition

The corresponding spectrum and cardinal characteristic are defined as

spec(mad) := {|A| | A is a mad family}
a := min(spec(mad)).
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Forcing in combinatorial set theory

◦ Forcing may be used to construct models in which combinatorial families
of reals of various different sizes exist (or not exist).

◦ Common forcing applications are:

Destroying the maximality families (by adding intruders),

Generating new maximal families (by adding diagonalizing reals),

Analyse which forcings may preserve the maximality of ground model
families.
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Mad indestructibility

◦ For maximal almost disjoint families Brendle and Yatabe proved the fol-
lowing implications between indestructibilities of mad families:

Theorem (Brendle, Yatabe, 2005)

B-indestructible S-indestructible

L-indestructible M-indestructible

C-indestructible

Theorem (Brendle, Hrušák, 2002)

Assume cov(M) = c. Then there is a S-indestructible mad family.
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Universally Sacks-indestructible families

Theorem (Fischer, Schrittesser, 2021)

In L there is a Π1
1 maximal eventually different family which is

indestructible by any countably supported product or iteration of
Sacks-forcing of any length.

Theorem (Fischer, S., 2022)

Under CH there is a partition of Baire space into compact sets which is
indestructible by any countably supported product or iteration of
Sacks-forcing of any length.

◦We call such combinatorial families of reals universally Sacks-indestructible.
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Universally Sacks-indestructible families

◦ With a bit more work the previous theorem can be split into the following
two results:

Theorem

Under CH there is a Sℵ0-indestructible maximal eventually different family,
where Sℵ0 is the countable support product of Sacks-forcing of size ℵ0.

Theorem

Every Sℵ0-indestructible maximal eventually different family is universally
Sacks-indestructible.
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What really is a type of combinatorial family?

◦ In order to generalize these results we have to specify what exactly we
mean with a type of combinatorial family:

◦ In particular we want the property of what constitutes a family of our
type and what constitutes an intruder to be arithmetically definable in the
following sense:
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Arithmetical types

Definition

An arithmetical type t (of a combinatorial family of reals) is a pair of
sequences t = ((ψn)n<ω, (χn)n<ω) such that both ψn(w0,w1, . . . ,wn) and
χn(v ,w1, . . . ,wn) are arithmetical formulas in n + 1 real parameters.

The domain dom(t) of the type t is the set

{F ⊆ P(ωω) | ∀n < ω ∀{f0, . . . , fn} ∈ [F ]n+1 we have ψn(f0, . . . , fn)}.

If F ∈ dom(t) we say F is of type t. If a real g satisfies

∀n < ω∀{f1, . . . , fn} ∈ [F ]n χn(g , f1, . . . , fn)

we call g an intruder for F . If a forcing P satisfies

P  F has no intruders,

we say P preserves F or F is P-indestructible.
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Translating forcing statements in Sℵ0

The reason we want our types to be arithmetically definable is that we may
translate forcing statement in Sℵ0 to equivalent Π1

3-statements:

Lemma (Fischer, S., 2022)

Let χ(v1, . . . , vk ,w1, . . . ,wl) be an arithmetical formula in k + l real
parameters. Further, let p ∈ Sℵ0 , f1, . . . , fl be reals and g1, . . . , gk be
codes for continuous functions g∗i : ω(ω2)→ ωω. Then the following are
equivalent:

1 p  Sℵ0
χ(g∗1 (sĠ ), . . . , g∗k (sĠ ), f1, . . . , fl),

2 ∀q≤ p ∃r ≤ q ∀x ∈ [r ] χ(g∗1 (x), . . . , g∗k (x), f1, . . . , fl).
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Universal Sacks-indestructibility

Theorem (Fischer, S., 2022)

Every Sℵ0-indestructible arithmetical combinatorial family of reals is
universally Sacks-indestructible.

Proof.

Sketch. Let P be any product or iteration of Sacks-forcing and assume
g∗(sĠ ) was a name for an intruder for a family F , where g∗ : ω(ω2)→ ωω.
By assumption

Sℵ0  g∗(sĠ ) is not an intruder for F

which is by definition of intruder expressed by

Sℵ0  ∃n < ω ∃{f1, . . . , fn} ∈ [F ]n ¬χn(g∗(sĠ ), f1, . . . , fn).
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Universal Sacks-indestructibility

Theorem (Fischer, S., 2022)

Every Sℵ0-indestructible arithmetical combinatorial family of reals is
universally Sacks-indestructible.

Proof.

Choose p ∈ Sℵ0 and {f1, . . . , fn} ∈ [F ]n such that

p  Sℵ0 ¬χn(g∗(sĠ ), f1, . . . , fn).

Since χn is an arithmetical formula by the previous Lemma choose q≤ p
such that

∀x ∈ [q] ¬χn(g∗(x), f1, . . . , fn).

Now, this is a Π1
1-formula, so it also holds in the extension by P, which

may be used to obtain a contradiction to the assumption that P forces
g∗(sĠ ) to be an intruder for F .
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Universal Sacks-indestructibility

Corollary (Fischer, S., 2022)

Every Sℵ0-indestructible mad family/med family/independent
family/ultrafilter basis/maximal cofinitary group/partition of Baire space
into compact sets/. . . is universally Sacks-indestructible.

Corollary (Shelah, Laver, resp.)

Every selective independent family and selective ultrafilter is universally
Sacks-indestructible.
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Constructing a universally Sacks-indestructible med family

Theorem (Fischer, Schrittesser, 2021)

Under CH there is a Sℵ0-indestructible maximal eventually different family.

Lemma (Fischer, Schrittesser, 2021)

Let p ∈ Sℵ0 , F be a countable med family and ġ be a Sℵ0-name such that

p  F ∪ {ġ} is a med family.

Then there is q≤ p and f ∈ ωω such that F ∪ {f } is a med family and

q  F ∪ {f , ġ} is not a med family.
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Excluding intruders lemma

Definition

Let t be an arithmetical type. We say the excluding-intruders-lemma holds
for type t iff we have the following property:

Let p ∈ Sℵ0 , F a countable family of type t and ġ be a Sℵ0-name such that

p  ġ is an intruder for F .

Then there is q≤ p and f ∈ ωω such that F ∪ {f } is of type t and

q  ġ is not an intruder for F ∪ {f }.

Theorem (Fischer, S., 2022)

Assume CH and the excluding-intruders-lemma holds for type t. Then
there is a universally Sacks-indestructible family of type t.
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Universally Sacks-indestructible cofinitary group

Lemma (Fischer, S., 2022)

The excluding-intruders-lemma holds for maximal cofinitary groups.

Corollary (Fischer, S., 2022)

Assume CH. Then there is a universally Sacks-indestructible maximal
cofinitary group.

We know that universally Sacks-indestructible mad families, med families
and partitions of Baire space into compact sets may be constructed in a
similar fashion, however:

Question

Does the excluding-intruders-lemma also hold for independent families and
ultrafilters?
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Thank you for your attention!
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